A twisted invariant for finitely presentable groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filling Length in Finitely Presentable Groups

Filling length measures the length of the contracting closed loops in a null-homotopy. The filling length function of Gromov for a finitely presented group measures the filling length as a function of length of edge-loops in the Cayley 2-complex. We give a bound on the filling length function in terms of the log of an isoperimetric function multiplied by a (simultaneously realisable) isodiametr...

متن کامل

All finitely presentable groups from link complements and Kleinian groups

Klein defined geometry in terms of invariance under groups actions; here we give a discrete (partial) converse of this, interpreting all (finitely presentable) groups in terms of the geometry of hyperbolic 3-manifolds (whose fundamental groups are, appropriately, Kleinian groups). For G∗ a Kleinian group of isometries of hyperbolic 3-space H, with MG∗ ∼= H3/G∗ a non-compact N -cusped orientable...

متن کامل

Perfect and Acyclic Subgroups of Finitely Presentable Groups

We consider acyclic groups of low dimension. To indicate our results simply, let G′ be the nontrivial perfect commutator subgroup of a finitely presentable group G. Then def(G) ≤ 1. When def(G) = 1, G′ is acyclic provided that it has no integral homology in dimensions above 2 (a sufficient condition for this is that G′ be finitely generated); moreover, G/G′ is then Z or Z. Natural examples are ...

متن کامل

Finitely Presentable Morphisms in Exact Sequences

Let K be a locally finitely presentable category. If K is abelian and the sequence 0 K // X // k // C c // // 0 // is short exact, we show that 1) K is finitely generated⇔ c is finitely presentable; 2) k is finitely presentable⇔ C is finitely presentable. The “⇐” directions fail for semi-abelian varieties. We show that all but (possibly) 2)(⇐) follow from analogous properties which hold in all ...

متن کامل

Algebraic lattices and locally finitely presentable categories

We show that subobjects and quotients respectively of any object K in a locally finitely presentable category form an algebraic lattice. The same holds for the internal equivalence relations on K. In fact, these results turn out to be—at least in the case of subobjects—nothing but simple consequences of well known closure properties of the classes of locally finitely presentable categories and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 2000

ISSN: 0386-2194

DOI: 10.3792/pjaa.76.143